Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-183310.v1

ABSTRACT

SARS-CoV-2 is continually evolving, with more contagious mutations spreading rapidly. Using in vitro evolution to affinity maturate the receptor-binding domain (RBD) of the spike protein towards ACE2 resulted in the more contagious mutations, S477N, E484K, and N501Y, to be among the first selected, explaining the convergent evolution of the “European” (20E-EU1), “British” (501.V1),”South African” (501.V2), and Brazilian variants (501.V3). Plotting the binding affinity to ACE2 of all RBD mutations against their incidence in the population shows a strong correlation between the two. Further in vitro evolution enhancing binding by 600-fold provides guidelines towards potentially new evolving mutations with even higher infectivity. For example, Q498R epistatic to N501Y. Nevertheless, the high-affinity RBD is also an efficient drug, inhibiting SARS-CoV-2 infection. The 2.9Å Cryo-EM structure of the high-affinity complex, including all rapidly spreading mutations, provides a structural basis for future drug and vaccine development and for in silico evaluation of known antibodies.


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.16.297945

ABSTRACT

SARS-CoV-2 is the causative agent behind the COVID-19 pandemic, and responsible for tens of millions of infections, and hundreds of thousands of deaths worldwide. Efforts to test, treat and vaccinate against this pathogen all benefit from an improved understanding of the basic biology of SARS-CoV-2. Both viral and cellular proteases play a crucial role in SARS-CoV-2 replication, and inhibitors targeting proteases have already shown success at inhibiting SARS-CoV-2 in cell culture models. Here, we study proteolytic cleavage of viral and cellular proteins in two cell line models of SARS-CoV-2 replication using mass spectrometry to identify protein neo-N-termini generated through protease activity. We identify multiple previously unknown cleavage sites in multiple viral proteins, including major antigenic proteins S and N, which are the main targets for vaccine and antibody testing efforts. We discovered significant increases in cellular cleavage events consistent with cleavage by SARS-CoV-2 main protease, and identify 14 potential high-confidence substrates of the main and papain-like proteases. We showed that siRNA depletion of these cellular proteins inhibits SARS-CoV-2 replication, and that drugs targeting two of these proteins: the tyrosine kinase SRC and the Ser/Thr kinase MYLK/MLCK, showed a dose-dependent reduction in SARS-CoV-2 titres. Overall, our study provides a powerful resource to understand proteolysis in the context of viral infection, and to inform the development of targeted strategies to inhibit SARS-CoV-2 and treat COVID-19 disease.


Subject(s)
Virus Diseases , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL